
Experiment 3

Preparation of Ferrocene

Background Knowledge

• Ferrocene

Rapid growth of organometallic chemistry is often attributed to the excitement arising from the discovery of ferrocene and its various a nalogues

Chemical Equation

2 NaC₅H₅ + FeCl₂ → Fe(C₅H₅)₂ + 2 NaCl

 $FeCl_2.4H_2O + 2 C_5H_6 + 2 KOH \rightarrow Fe(C_5H_5)_2 + 2 KCI + 6 H_2O$

Chemicals

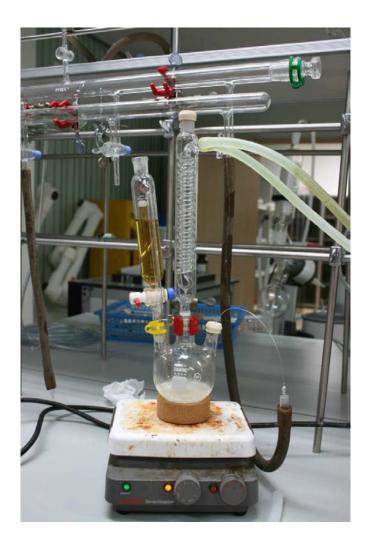
• Diethyl ether

• FeCl₂

• KOH

• DMSO

	Hazards		Hazards		Hazards		Hazards	
MSDIS	External MSDS	NFPA 704		MSDS	ICSC 0357 🗗	MSDS	External MSDS	
R-phrases	R12 R19 R20/22 R66 R67			GHS pictograms		R-phrases	R36/37/38	
S-phrases	<u>S9 S16 S29 S33</u>					S-phrases	S26, S37/39	
Main hazardis	Extremely Flammable, harmful to skin			GHS signal word	Danger	Main hazards NFPA 704	Irritant and flammable	
NFPA 704				GHS hazard	H302, H314 ^[5] P280, P305+351+338,			
				statements				
				GHS				
				precautionary	P310 ^[5]			
Flash point	-45 °C ^[1]			statements		Flash point	89 °C	
	160 °C ^[1]			EU Index	019-002-00-8	0		
Autoignition temperature	160 *C***			EU classification	🔁 c 🗙 xn	167.8 pm		
Explosive limits	1,9-48,0% [2]			R-phrases	R22, R35	186.2 pm 198	CH₃	
				S-phrases	(S1/2), S26, S36/37/39, S45	₩ČH	3	
				NFPA 704	301	_		
				Flash point	Non-flammable			


LD₅₀

273 mg/kg (oral, rat)^[6]

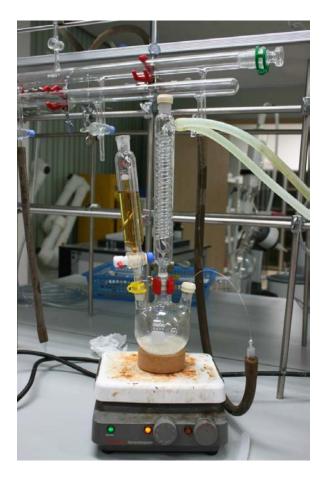
Preparation of Ferrocene (by TA)

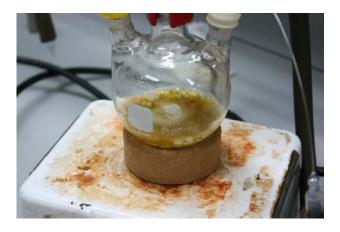
- ① Check that the flask contains at least 100 ml of dicyclopentadiene.
- (2) Collect the distillate that condenses in the range $42 \sim 44$ °C and keep it cooled with an ice bath around the receiving flask.
- ③ Store the product in a refrigerator at low temperature

1) Fix a 250 ml three neck flask with a mechanical stirrer to a Liebig condenser.

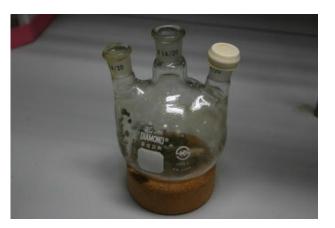
(2) Fix a 50 ml dropping funnel to one side neck by means of a side-arm adaptor.

③ Connect a bubbler to the other side to prevent air entry and monitor the nitrogen flow rate.


④ Charge the flask with diethyl ether (50 ml) and flake potassium hydroxide (20 g), stir well and flow the nitrogen gas.


(5) Meanwhile, dissolve finely powdered iron(II) chloride tetrahydrate (5 g) with dimethylsulphoxide in 50 ml round bottom flask, degassed by bubbling nitrogen through it (20 ml, avoid skin contact; stirring for an hour).

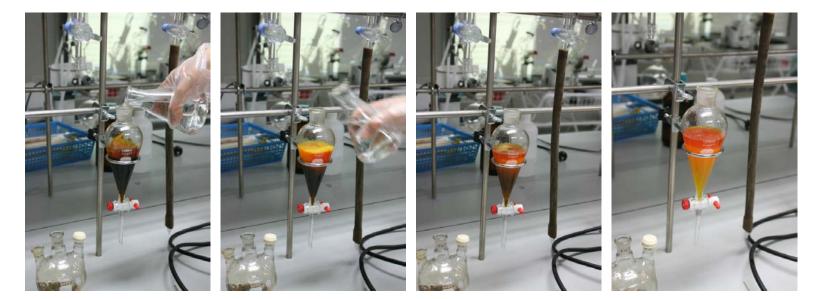
6 Add 4.25 ml cyclopentadiene to the KOH/ether mixture by using a 10 ml syringe.


- ⑦ After 15 min, discontinue the nitrogen flow and dropwise the iron (II) chloride solution.
- (8) Restore a slow nitrogen flow and replace any ether lost by evaporation.

(Care : the KOH/solvent mixture is extremely corrosive)

(9) Continue stirring for a further 30 min.

Wash the dark residue
with 25 ml ether and transfer it
to a separation funnel.



(1) Wash it with 2 M HCl (2×20 ml) , distilled water (2×20 ml).

① Extract the ether layer.

(Because ether may boil, extract the solution carefully.)

1 Add MgSO₄ sufficiently to the solution and wait for 10 min.

(A) Filter $MgSO_4$ and carefully evaporate off the ether to deposit orange crystals of ferrocene.

(15) Examine the solubility of ferrocene. (Water, Dichloromethane, Toluene) Account for your observations in terms of structure and bonding of the mol ecule

Add ferrocene (0.1 g) to water (5 ml) followed by concentrated nitric acid (5 ml) – Extreme caution !

Shake the tube gently for 2 min and record your observations

Sublimation and NMR test by TA

To do..

- 1. Draw d-orbital splitting of Fe in ferrocene and assign each orbital.
- 2. Explain the reason why cyclopentadiene monomer have to be storaged at low temperature.
- 3. Why do we use KOH ?
- 4. Analyze UV & NMR data.
- 5. More than two about application of ferrocene.